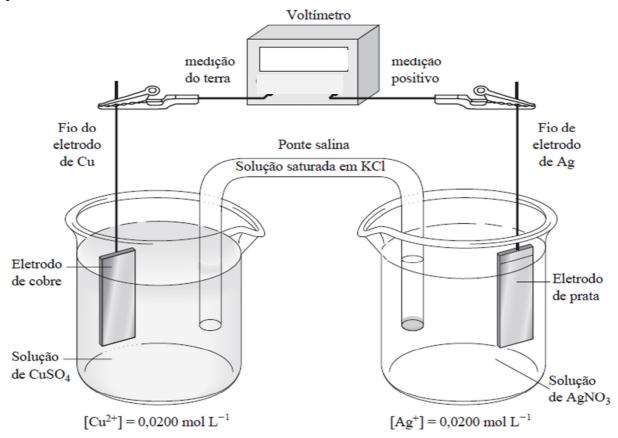


#### UNIVERSIDADE FEDERAL DE MINAS GERAIS Instituto de Ciências Exatas - ICEx Departamento de Química Av. Pres. Antônio Carlos, 6627, Pampulha 31270-901 - Belo Horizonte, MG, Brasil



# CADERNO DE QUESTÕES

# PROVA DE CONHECIMENTOS EM QUÍMICA PARA INGRESSO NA PÓS-GRADUAÇÃO (MESTRADO) DO DQ/UFMG NO 1º SEMESTRE DE 2013


## 19 de FEVEREIRO de 2013

#### Instruções:

- Leia atentamente a prova;
- Escolha apenas 02 (duas) questões de cada área para resolver;
- Cada questão escolhida será resolvida em sua própria folha no caderno de respostas;
- O caderno de questões deve ser devolvido juntamente com o caderno de respostas.
- Desligue os seus aparelhos eletrônicos durante a prova (celular, tablet, etc).

# PROVA DE CONHECIMENTOS (MESTRADO)-DQ/UFMG $\underline{\acute{A}REA~1}$

**QUESTÃO 1A:** Para a célula galvânica (condicionada a 25 °C) apresentada na figura, responda as questões abaixo.



- a) Represente esquematicamente a célula acima empregando a convenção por "Notação em Barras" e apresente sua equação química global.
- **b)** Calcule o valor de potencial medido pelo voltímetro na célula eletroquímica, sabendo que  $[Cu^{2+}] = 0,0200 \text{ mol } L^{-1} \text{ e } [Ag^+] = 0,0200 \text{ mol } L^{-1}$ .
- c) Determine a constante global da célula eletroquímica.

#### **Dados:**

Ag<sup>+</sup> + e<sup>-</sup>
$$\rightleftharpoons$$
Ag(s)  $E^0 = 0,799 \text{ V}$   
Cu<sup>2+</sup> + 2e<sup>-</sup> $\rightleftharpoons$ Cu(s)  $E^0 = 0,377 \text{ V}$ 

**QUESTÃO 1B:** A constante do produto de solubilidade do oxalato de prata  $(Ag_2C_2O_4)$  é igual a 3,5 x  $10^{-11}$ . Sendo assim, determine o valor de pH de uma solução preparada para dissolver completamente 2 mg de  $Ag_2C_2O_4$  em um volume total igual a 4 mL. Apresente os cálculos

#### **Dados:**

MM = 303,76 g mol<sup>-1</sup>  

$$K_{a1}$$
 (H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>) = 5,60 x 10<sup>-2</sup> e  $K_{a2}$  (H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>) = 5,42 x 10<sup>-5</sup>

**QUESTÃO 1C:** Para a realização de uma análise, um químico necessitava controlar o pH do meio entre 4,00 e 5,00 durante todo experimento. Para isso, ele preparou 1,0 L de solução tampão constituída pela mistura de 4,67 g de ácido fenilacético (HA) e 12,43 g de fenilacetato de sódio (NaA).

- **a)** Determine o pH da solução tampão resultante. (Considere que as substâncias adicionadas permanecem na mesma forma na solução)
- **b)** Em um dado momento do experimento, o químico necessitava adicionar 20,0 mL de uma solução de NaOH 0,500 mol  $L^{-1}$ . Qual será o novo pH do sistema?
- c) Com base nos resultados obtidos nos itens (a) e (b), pode-se afirmar que a solução tampão escolhida é adequada para a realização do experimento? Justifique

#### Dados:

Ácido fenilacético (HA):  $K_a = 4,90 \times 10^{-5}$ MM ácido fenilacético (HA) = 136,15 g mol<sup>-1</sup> MM fenilacetato de sódio (NaA) = 158,13 g mol<sup>-1</sup>

\_\_\_\_\_

Formulário: <u>ÁREA 1</u>

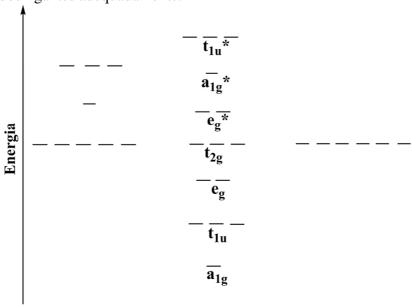
| $K' = \frac{K}{\alpha_{\scriptscriptstyle M} \alpha_{\scriptscriptstyle L}}$                    | $\alpha = 1 + \beta_1[L] + \beta_2[L]^2 + + \beta_n[L]^n$            |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $\alpha = [M]'/[M]$                                                                             | $[H^+] = \sqrt{K_a C_a}$                                             |
| $[H^{+}]^{2} + K_{a}[H^{+}] - K_{a}C_{a} = 0$                                                   | $[H^+] = K_a \left(\frac{C_a}{C_b}\right)$                           |
| $pH = pK_a - \log\left(\frac{C_a}{C_b}\right)$                                                  | $K_w = K_a K_b = [H_3 O^+][OH^-] = 1,0x10^{-14}$                     |
| $S = \frac{K_{ps}}{[M]} \left( 1 + \frac{[H^+]}{K_{a2}} + \frac{[H^+]^2}{K_{a1}K_{a2}} \right)$ | $E = E^0 - \frac{0,0592}{n} \log \frac{[\operatorname{Re} d]}{[Ox]}$ |
| $\log K = \frac{n(E_{catodo}^{0} - E_{anodo}^{0})}{0,0592}$                                     |                                                                      |

# PROVA DE CONHECIMENTOS (MESTRADO)-DQ/UFMG ÁREA 2

**QUESTÃO 2A:** Considere os íons complexos octaédricos: hexaaquaferro(III) e hexaaquarutênio(III), cujos centros metálicos são isoeletrônicos. Dica: o símbolo químico do elemento rutênio é Ru.

- a) Segundo a Teoria de Campo Cristalino (TCC), um dos íons complexos é paramagnético em 5 elétrons, enquanto o outro é paramagnético em apenas 1 elétron. Indique o íon complexo com menos elétrons desemparelhados e justifique sua resposta.
- **b)** O íon hexaaquaferro(III) apresenta efeito Jahn-Teller? Justifique sua resposta e **inclua** na mesma o cálculo da energia de estabilização (EECC) do íon complexo.
- c) O íon hexaaquaferro(III) reage com dois íons oxalato  $(C_2O_4^{2-})$  para gerar o íon complexo diaquabis(oxalato)ferrato(III). Desenhe as estruturas dos três isômeros do íon complexo diaquabis(oxalato)ferrato(III) formado.

**QUESTÃO 2B:** Considere os dados apresentados no quadro abaixo:


**Quadro 1.** Constantes de formação para íons complexos de Hg<sup>2+</sup> com diferentes ligantes à temperatura de 25° C.

| Íon Complexo            | Constante de formação |
|-------------------------|-----------------------|
| $[\mathrm{HgI_4}]^{2-}$ | $6.8 \times 10^{29}$  |
| $[Hg(C_2O_4)_2]^{2-}$   | $9.5 \times 10^6$     |

- a) Partindo do íon  $[Hg(H_2O)_4]^{2+}$ , escreva a equação química que representa a formação do íon complexo  $[HgI_4]^{2-}$ .
- **b) Indique** qual complexo é termodinamicamente mais favorecido  $([HgI_4]^{2-} \text{ ou } [Hg(C_2O_4)_2]^{2-})$ . Justifique a sua resposta considerando a classificação de Pearson para ácidos e bases.
- c) O íon  $[HgI_4]^{2-}$  apresenta geometria tetraédrica ou quadrada? Justifique sua resposta utilizando argumentos da TCC.

QUESTÃO 2C: Considere o seguinte íon complexo: hexaaquaferro(II).

a) Utilizando o diagrama de níveis de energia apresentado abaixo, **faça o preenchimento** eletrônico dos orbitais atômicos e dos orbitais moleculares para o complexo citado. **Rotule** os orbitais do centro metálico e dos ligantes adequadamente.



- **b)** Determine a ordem de ligação  $\sigma$  total e também o valor da ordem de ligação  $\sigma$  entre o centro metálico e cada ligante.
- c) Escolha, entre os dois diagramas de orbitais moleculares apresentados, aquele que melhor representa a formação das ligações  $\pi$  no complexo. Identifique o complexo no diagrama escolhido e **faça o preenchimento** eletrônico dos orbitais atômicos e dos orbitais moleculares. Determine a ordem de ligação  $\pi$  total, e também o valor da ordem de ligação  $\pi$  entre o centro metálico e cada ligante.



\_\_\_\_\_

## Formulário e Informações Adicionais:

ÁREA 2

**Série espectroquímica:**  $\Gamma < Br^- < S^{2-} < \underline{S}CN^- < Cl^- < N_3^-, F^- < ureia, OH^- < C_2O_4^{2-}, O^{2-} < H_2O < \underline{N}CS^- < py, NH_3 < en < bipy, phen < \underline{N}O_2^- < CH_3^-, C_6H_5^- < CN^- < CO$ 

Ordem de Ligação =  $\frac{1}{2}$  ( $e_0^-$  OML -  $e_0^-$  OMAL);

onde OML = orbitais moleculares ligantes e OMAL = orbitais moleculares antiligantes.

**Quadro 2.** Classificação de algumas espécies químicas como ácidos ou bases segundo a classificação de Pearson.

| Classificaç | gao de i carson.                                                                         |                                                                                                |                                                                                               |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
|             | DUROS                                                                                    | FRONTEIRA                                                                                      | MACIOS                                                                                        |  |  |  |  |
|             | H <sup>+</sup> , Li <sup>+</sup> , Na <sup>+</sup> , K <sup>+</sup> , Be <sup>2+</sup> , | Fe <sup>2+</sup> , Co <sup>2+</sup> , Ni <sup>2+</sup> , Cu <sup>2+</sup> , Zn <sup>2+</sup> , |                                                                                               |  |  |  |  |
| Ácidos      | Mg <sup>2+</sup> , Ca <sup>2+</sup> , SO <sub>3</sub> , BF <sub>3</sub>                  | $Pb^{2+}$ , $SO_2$ , $BBr_3$                                                                   | Pd <sup>2+</sup> , Cd <sup>2+</sup> , Pt <sup>2+</sup> , Hg <sup>2+</sup> , BH <sub>3</sub> , |  |  |  |  |
|             |                                                                                          |                                                                                                | M <sup>0</sup> (metais não oxidados)                                                          |  |  |  |  |
|             |                                                                                          | $NO_2^-$ , $SO_3^{2-}$ , $N_3^-$ , $N_2$ ,                                                     | H <sup>-</sup> , R <sup>-</sup> , CN <sup>-</sup> , CO, I, SCN <sup>-</sup> ,                 |  |  |  |  |
| Bases       | $CO_3^{2-}$ , $NO_3^{-}$ , $O_2^{-}$ , $SO_4^{2-}$ ,                                     | $C_6H_5N$ , $SCN^-$                                                                            | $R_3P$ , $C_6H_6$ , $R_2S$ , $RSH$                                                            |  |  |  |  |
|             | PO <sub>4</sub> <sup>3-</sup> , ClO <sub>4</sub> <sup>-</sup>                            |                                                                                                |                                                                                               |  |  |  |  |

O elemento sublinhado é o sítio pelo qual ocorre a ligação química na referida classificação.

# PROVA DE CONHECIMENTOS (MESTRADO)-DQ/UFMG ÁREA 3

**QUESTÃO 3A:** A dissociação de cloretos de triarilmetila, em soluções de dióxido de enxofre, aos seus repesctivos íons se dá segundo a equação abaixo:

$$Ar_3CCI \stackrel{K}{\longrightarrow} Ar_3C^+ + CI^-$$

- a) Classifique em ordem crescente as constantes de dissociação ( $K_1$ - $K_5$ ) dos seguintes cloretos de triarilmetila. Justique sua resposta baseando-se nos aspectos intrínsicos das espécies iônicas formadas.
- **b)** Qual dos cátions derivados dos cloretos de triarilmetila mostrados ao lado seria a espécie mais eletrofílica? Justifique sua resposta.

$$O_2N$$
 $O_2$ 
 $K_1$ 
 $O_2$ 
 $O_2$ 
 $O_3$ 
 $O_4$ 
 $O_5$ 
 $O_5$ 
 $O_5$ 
 $O_5$ 
 $O_5$ 
 $O_6$ 
 $O_7$ 
 $O_7$ 
 $O_7$ 
 $O_8$ 
 $O_8$ 

QUESTÃO 3B: Com relação à acidez e basicidade de compostos orgânicos, responda:

a) Mostre o mecanismo (com setas curvas) para as reações entre as aminas 1, 2 e 3 com ácido acético ( $CH_3CO_2H$ ;  $pK_a$  4,76).

$$N$$
 (1) (2) (3)  $PK_a^{BH^+}$  10,58 7,79 5,06

- **b)** Discuta o deslocamento do equilíbrio para as seguintes reações ácido-base: i) reação entre a amina  $\bf 1$  e o ácido acético (p $K_a$  4,76); ii) reação entre a amina  $\bf 3$  e o ácido acético (p $K_a$  4,76). Justifique suas respostas.
- c) Discuta o efeito responsável pelas diferenças observadas nos valores de  $pK_a^{BH^+}$  dos ácidos conjugados das aminas 1-3.

**QUESTÃO 3C:** O brometo **1** (estrutura abaixo) pode ser preparado pela adição de ácido bromídrico (HBr) a uma mistura de dois alcenos diferentes (**I** e **II**). Porém tratando-se a mistura dos alcenos **I** e **II** com DBr ao invéz de HBr, é obtido majoritariamente uma mistura de cinco (5) estereoisômeros (isômeros de **A** a **E**)

- a) Quais são as estruturas dos alcenos I e II?
- **b**) Quais são as estruturas dos isômeros (**A-E**) formados na reação da mistura de **I** e **II** com o DBr?

- c) Para os estereoisômeros de A a E, qual(is) possui(em) quiralidade?
- **d)** Especifique a(s) configuração( $\tilde{o}$ es) como R ou S do(s) centro(s) estereogênico(s) presente(s) nos isômeros indicados na resposta do item **c**.

# PROVA DE CONHECIMENTOS (MESTRADO)-DQ/UFMG ÁREA 4

**Questão 4A:** Uma máquina de Carnot usando como substância de trabalho 1,0 mol de gás ideal monoatômico,  $C_{v,m} = 1,5$  R J  $K^{-1}$  mol<sup>-1</sup>, tem seu estado inicial em 600 K e 10 atm. Considere que esta máquina realiza o seguinte ciclo:

- (a) Expansão isotérmica e reversível até que a pressão caia a ½ da pressão inicial.
- (b) Expansão adiabática reversível até 300 K e volume de 27,82 L.
- (c) Compressão isotérmica reversível até que a pressão de 1,76 atm.
- (d) Compressão adiabática reversível até retornar ao estado inicial.

#### **Pede-se:**

a) Complete os quadros abaixo (apresente sua resposta no campo específico do Caderno de Respostas), calculando ou justificando os valores:

 Quadro 1

 Estado
 P / atm
 V / dm³
 T / K

 1
 4,920

 2
 3

 4
 4

Ouadro 2

|          | Quiui 0 2 |               |                 |                 |  |  |  |  |  |  |  |  |  |  |
|----------|-----------|---------------|-----------------|-----------------|--|--|--|--|--|--|--|--|--|--|
| Processo | Q/kJ      | w / <i>kJ</i> | $\Delta U / kJ$ | $\Delta H / kJ$ |  |  |  |  |  |  |  |  |  |  |
| 1→2      |           |               |                 |                 |  |  |  |  |  |  |  |  |  |  |
| 2→3      |           |               |                 |                 |  |  |  |  |  |  |  |  |  |  |
| 3→4      |           |               |                 |                 |  |  |  |  |  |  |  |  |  |  |
| 4→1      |           |               |                 |                 |  |  |  |  |  |  |  |  |  |  |
| ciclo    |           |               |                 |                 |  |  |  |  |  |  |  |  |  |  |

**b)** Qual(ais) propriedade(s) calculada(s) é(são) função(ões) de estado? Entre essas propriedades, existe alguma que pode ser usada para determinar se o processo é espontâneo?

**Questão 4B: a)** Calcule o  $\Delta_f S_{m,298,15K}^{\theta}$  do gás etano  $C_2H_6(g)$  a 25°C considerando as seguintes reações:

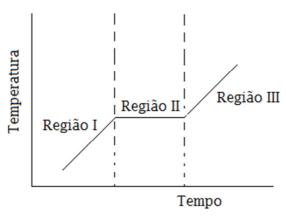
$$C_{2}H_{6}(g) + 7/2O_{2}(g) \Rightarrow 2CO_{2}(g) + 3H_{2}O(l)$$

$$\Delta_{r}H_{m,298,15K}^{\theta} = -1560,0 \text{ kJ mol}^{-1}$$

$$C(s, \text{ grafite}) + O_{2}(g) \Rightarrow CO_{2}(g)$$

$$\Delta_{r}H_{m,298,15K}^{\theta} = -393,5 \text{ kJ mol}^{-1}$$

$$\Delta_{r}H_{m,298,15K}^{\theta} = -286,0 \text{ kJ mol}^{-1}$$


**b**) Sabemos que não podemos obter o gás etano reagindo grafite com gás hidrogênio. Portanto, o ΔH dessa reação de formação não pode ser medido diretamente. No entanto, como verificado no item (**a**), pudemos obter o valor desejado considerando as equações termoquímicas das reações mostradas acima. Por que isso é possível?

c) Considerando os dados abaixo, calcule o  $\Delta_f S_{m,298,15K}^{\theta}$  para a reação de formação do  $C_2H_6(g)$ .

|                                            | C(s, grafite) | $H_2(g)$ | $C_2H_6(g)$ . |
|--------------------------------------------|---------------|----------|---------------|
| $S_{m,298,15K}^{\theta} / JK^{-1}mol^{-1}$ | 5.740         | 120,604  | 220.60        |
|                                            | 5,740         | 130,684  | 229,60        |

**d**) Qual o valor do  $\Delta_f G_{m,298,15K}^{\theta}$  para a reação de formação do  $C_2H_6(g)$  na temperatura de 25°C? Esse é um processo espontâneo? Explique sua resposta.

**Questão 4C:** Considere que uma substância pura, inicialmente sólida, foi aquecida até algum tempo após sua completa fusão. A figura abaixo representa a variação da temperatura dessa amostra durante esse processo.



Pede-se

- a) Identifique se o processo é endotérmico ou exotérmico. Justifique.
- **b)** Considerando que durante todo o processo a amostra receba um fluxo contínuo e uniforme de calor **explique** por que a temperatura aumenta nas regiões I e III, indicadas no gráfico.
- c) Considerando que durante todo o processo a amostra receba um fluxo contínuo e uniforme de calor **explique** por que a temperatura não se altera durante a fusão (região II do gráfico).

Formulário: <u>ÁREA 4</u>

 $R = 0.082 \text{ atm } L \text{ mol}^{-1} \text{ K}^{-1} = 1.987 \text{ cal mol}^{-1} = 8.314 \text{ J mol}^{-1}$   $1 F = 9.6485 \times 10^{-4} \text{ C mol}^{-1}$   $CNATP = 298.15 \text{ Ke 1 bar } (10^{5} \text{ Pa})$   $g = 9.81 \text{ m/s}^{2}$  1 atm = 760 mmHg = 101325 Pa  $1 J = 1 C \times 1 V$ 

**Regra das fases:** F = C - P + 2

| $P_1V_1 = P_2V_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 187                                                                                                                                                     |                                                                                              | ,5R gás mor                                              |                                                                                                |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| $P_1/T_1 = P_2/T_2$<br>$pV_m = RT(1 + B'p +)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $dw = -p_{ex} dV$ $w = -nRT \ln (V_f/V_f)$                                                                                                                | .) [                                                                                         | $C_{v,m} = 3R$ moléculas poliatômic                      |                                                                                                |  |  |  |  |
| 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta U = q + w$                                                                                                                                        | $C_p - C_p$                                                                                  | $C_v = nR$ para                                          | _                                                                                              |  |  |  |  |
| $pV_{m} = RT \left( 1 + \frac{B}{V_{m}} + \dots \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H = U + PV$ $\Delta H = \Delta U + RT\Delta n_g$                                                                                                         | $Z = \frac{P}{I}$                                                                            | RT ou                                                    | ou $Z = \frac{V_m}{V_m^0}$                                                                     |  |  |  |  |
| $p = \frac{RT}{V_{m}-b} - \frac{a}{V_{m}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |                                                                                              | $\left(\frac{\partial U}{\partial T}\right)_{V}$ e       | $C_P = \left(\frac{\partial H}{\partial T}\right)_P$                                           |  |  |  |  |
| Processos adiabáticos<br>reversíveis de gases ideais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\mathbf{V}_{_{\mathrm{f}}}}{\mathbf{V}_{_{\mathrm{i}}}} = \left(\frac{\mathbf{T}_{_{\mathrm{i}}}}{\mathbf{T}_{_{\mathrm{f}}}}\right)^{\mathrm{C}}$ |                                                                                              |                                                          | = nCv ΔT                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{p_{_{i}}}{p_{_{f}}} = \left(\frac{V_{_{f}}}{V_{_{i}}}\right)^{\gamma}$                                                                             | $\gamma = \frac{\text{Cv,m} + \text{R}}{\text{Cv,m}}$                                        | $C = \frac{Cv,m}{R}$                                     | ou $C = \frac{Cv}{nR}$                                                                         |  |  |  |  |
| $\Delta_{r}H^{\theta}(T_{2}) = \Delta_{r}H^{\theta}(T_{1}) + \int \Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                                                                                                                                                         | produtos reagentes                                                                           |                                                          | $\mu = \left(\frac{\partial T}{\partial p}\right)_{H}$                                         |  |  |  |  |
| $\Delta_{\rm r} H^{\theta} = \sum_{\rm produtos} \nu  \Delta_{\rm f} H^{\theta} - \sum_{\rm reagentes} \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \left( \frac{1}{2} \left( \frac$ | $v \Delta_f H^{\theta}$ $dS = \frac{d\theta}{dt}$                                                                                                         | $\frac{Q_{rev}}{T}$ $\Delta S =$                                                             | $nR ln \frac{V_f}{V_i}$                                  | $\Delta_{trs}S = \frac{\Delta_{trs}H}{T_{trs}}$                                                |  |  |  |  |
| $\Delta S = nCp \ln \frac{T_f}{T_i} \qquad \Delta S =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $nCv ln \frac{T_f}{T_i} \mid S^{\theta}(T_2)$                                                                                                             | $= S^{\theta} \left( T_{1} \right) + \int \frac{C_{p}^{\theta}}{T} dt$                       | $T \left  \epsilon = 1 - \frac{ q }{ q } \right $        | $\frac{2}{1} = 1 - \frac{T_2}{T_1} = \frac{ w }{q_{alta}}$                                     |  |  |  |  |
| ` ' ' ' ' ' ' ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left(\frac{\partial p}{\partial S}\right)_{V}  \left(\frac{\partial T}{\partial p}\right)_{S} =$                                                        | $\left(\frac{\partial V}{\partial S}\right)_p  \left(\frac{\partial p}{\partial T}\right)_V$ | $= \left(\frac{\partial S}{\partial V}\right)_T  \left($ | $\left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$ |  |  |  |  |
| Equações fundamentais da termodinâmica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                              | = -SdT - pdV $A = U - TS$                                | $\Delta A = -SdT + Vdp$ $\Delta A = \Delta U - T\Delta S$                                      |  |  |  |  |
| $\Delta_{\rm r} S^{\theta} = \sum_{\rm produtos} \nu S^{\theta} - \sum_{\rm reagentes} \nu S^{\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           | $v\Delta_{\rm f}G^{\theta} - \sum_{\rm reagentes} v\Delta_{\rm f}$                           | Cθ                                                       | $= \mu^{\theta} + RT \ln \frac{p}{p^{\theta}}$                                                 |  |  |  |  |
| $G_m = G_m^{\theta} + RT \ln \frac{p}{p^{\theta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{dp}{dT} = \frac{\Delta_{trs}S}{\Delta_{trs}V} \qquad \qquad \int_{p^*}^{p}$                                                                        | $dp = \frac{\Delta_{fus} H}{\Delta_{fus} V} \int_{T^*}^{T} \frac{dT}{T}$                     | $ \frac{1 \ln \frac{p}{p^*} = -1}{1 + 1} $               | $\frac{\Delta_{vap}H}{R}\left(\frac{1}{T}-\frac{1}{T^*}\right)$                                |  |  |  |  |
| $\left(\frac{\partial G}{\partial T}\right)_p = -S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\left(\frac{\partial G}{\partial p}\right)_{T} = V_{m}$                                                                                                  | $\left(\frac{\partial G}{\partial n}\right)_{T,p} = \mu$                                     | ı                                                        | $\frac{dp}{dT} = \frac{\Delta_{trs}S}{\Delta_{trs}V}$                                          |  |  |  |  |

| Hidrogênio       | 2                |                  |                       |                  |                     |                  |                 |                    |                      |                     |                   | 13               | 14               | 15                 | 16               | 17              | Hélio             |
|------------------|------------------|------------------|-----------------------|------------------|---------------------|------------------|-----------------|--------------------|----------------------|---------------------|-------------------|------------------|------------------|--------------------|------------------|-----------------|-------------------|
| 3                | 4                |                  |                       |                  |                     |                  |                 |                    |                      |                     | 1                 | 5                | 6                | 7                  | 8                | 9               | 10                |
| Li               | Be               |                  |                       |                  |                     |                  |                 |                    |                      |                     |                   | В                | С                | N                  | 0                | F               | Ne                |
| Lítio<br>6,9     | Berílio<br>9,0   |                  |                       |                  |                     |                  |                 |                    |                      |                     |                   | Boro<br>10,8     | Carbono<br>13,0  | Nitrogênio<br>14,0 | Oxigênio<br>16,0 | Flúor<br>19,0   | Neônio<br>20,2    |
| 11               | 12               |                  |                       | _                |                     |                  |                 |                    |                      |                     |                   | 13               | 14               | 15                 | 16               | 17              | 18                |
| Na               | Mg               | 0                | 4                     | _                | _                   | 7                | 0               | _                  | 40                   | 4.4                 | 10                | Al               | Si               | P                  | S                | CI              | Ar                |
| Sódio<br>23,0    | Magnésio<br>24,3 | 3                | 4                     | 5                | 6                   | 7                | 8               | 9                  | 10                   | 11                  | 12                | Alumínio<br>27,0 | Silício<br>28,1  | Fósforo<br>31,0    | Enxofre<br>32,1  | Cloro<br>35,5   | Argônio<br>39,9   |
| 19               | 20               | 21               | 22                    | 23               | 24                  | 25               | 26              | 27                 | 28                   | 29                  | 30                | 31               | 32               | 33                 | 34               | 35              | 36                |
| K                | Ca               | Sc               | Ti                    | V                | Cr                  | Mn               | Fe              | Co                 | Ni                   | Cu                  | Zn                | Ga               | Ge               | As                 | Se               | Br              | Kr                |
| Potássio<br>39,1 | Cálcio<br>40,1   | Escândio<br>45,0 | Titânio<br>47,9       | Vanádio<br>50,9  | Cromo<br>52,0       | Manganês<br>54,9 | Ferro<br>55,8   | Cobalto<br>58,9    | Níquel<br>58,7       | Cobre<br>63,5       | Zinco<br>65,4     | Gálio<br>69,7    | Germânio<br>72,6 | Arsênio<br>74,9    | Selênio<br>79,0  | Bromo<br>79,9   | Criptônio<br>83,8 |
| 37               | 38               | 39               | 40                    | 41               | 42                  | 43               | 44              | 45                 | 46                   | 47                  | 48                | 49               | 50               | 51                 | 52               | 53              | 54                |
| Rb               | Sr               | Υ                | Zr                    | Nb               | Mo                  | Tc               | Ru              | Rh                 | Pd                   | Ag                  | Cd                | In               | Sn               | Sb                 | Te               |                 | Xn                |
| Rubídio          | Estrôncio        | Ítrio            | Zinco                 | Nióbio           | Molibdênio          | Tecnécio         | Rutênio         | Ródio              | Paládio              | Prata               | Cádmio            | Índio            | Estanho          | Antimônio          | Telúrio          | lodo            | Xenônio           |
| 55               | 56               | 57-71            | 72                    | 73               | 74                  | 75               | 76              | 77                 | 78                   | 79                  | 80                | 81               | 82               | 83                 | 84               | 85              | 86                |
| Cs               | Ba               |                  | Hf                    | Ta               | W                   | Re               | Os              | Ir                 | Pt                   | Au                  | Hg                | TI               | Pb               | Bi                 | Po               | At              | Rn                |
| Césio<br>132,9   | Bário<br>137,3   |                  | Háfnio<br>178,5       | Tântalo<br>180,9 | Tungstênio<br>183,8 | Rênio<br>186,2   | Ósmio<br>190,2  | Irídio<br>192,2    | Platina<br>195,1     | Ouro<br>197,0       | Mercúrio<br>200,6 | Tálio<br>204,4   | Chumbo<br>207,2  | Bismuto<br>209,0   | Polônio<br>[209] | Ástato<br>[210] | Radônio<br>[222]  |
| 87               | 88               | 89-103           | 104                   | 105              | 106                 | 107              | 108             | 109                | 110                  | 111                 | 112               |                  |                  |                    |                  |                 |                   |
| Fr               | Ra               |                  | Rf                    | Db               | Sg                  | Bh               | Hs              | Mt                 | Ds                   | Rg                  | Cn                |                  |                  |                    |                  |                 |                   |
| Frâncio<br>[123] | Radio<br>[226]   |                  | Rutherfórdio<br>[261] | Dúbnio<br>[262]  | Seabórgio<br>[266]  | Bóhrio<br>[264]  | Hássio<br>[277] | Meitnério<br>[268] | Darmstádtio<br>[271] | Roentgênio<br>[272] |                   |                  |                  |                    |                  |                 |                   |

| Número atômico  | 57       | 58    | 59          | 60       | 61       | 62       | 63       | 64        | 65         | 66         | 67         | 68     | 69         | 70      | 71        |
|-----------------|----------|-------|-------------|----------|----------|----------|----------|-----------|------------|------------|------------|--------|------------|---------|-----------|
| Numero atornico | La       | Ce    | Pr          | Nd       | Pm       | Sm       | Eu       | Gd        | <b>T</b> b | Dv         | Но         | Er     | Tm         | Yb      | Lu        |
|                 | Lantânio | Cério | Praseodímio | Neodímio | Promécio | Samário  | Európio  | Gadolínio | Térbio     | Disprósio  | Hôlmio     | Érbio  | Túlio      | Itérbio | Lutécio   |
|                 | 138,8    | 140,1 | 140.9       | 144.2    | [145]    | 150,4    | 152,0    | 157,3     | 158,9      | 162,5      | 164,9      | 167,3  | 168,9      | 173,0   | 175.0     |
| Símbolo         | 89       | 90    | 91          | 92       | 93       | 94       | 95       | 96        | 97         | 98         | 99         | 100    | 101        | 102     | 103       |
| Cirribolo       | ۸۵       | Th    | Pa          | 11       | NIn      | Du       | Δm       | Cm        | Bk         | Cf         | Es         | Em     | Md         | No      | l r       |
| Nome            | AC       | 111   | га          | U        | Np       | ru       | AIII     | Cm        | DK         | CI         | <b>L</b> 5 | Fm     | IVIC       | No      | L-1       |
|                 | Actínio  | Tório | Protactínio | Urânio   | Netúnio  | Plutônio | Amerício | Cúrio     | Berquélio  | Califórnio | Einstêinio | Férmio | Mendelévio | Nobélio | Laurêncio |
| Massa atômica   | [227]    | 232,0 | 231,0       | 238,0    | [237]    | [244]    | [243]    | [247]     | [247]      | [251]      | [252]      | [257]  | [258]      | [259]   | [262]     |